Antibacterial Activity and in-vivo Protection Potentials of Aspergillus Species SK2 Antibiotic Substance against the Establishment of Infections By ?- Lactamase Producing Clinical Bacteria
Contenu principal de l'article
Résumé
Antibacterial activity of an Aspergillus species SK2 (AS – SK2) antibiotic substance against ?-lactamase producing bacteria assayed by agar-well diffusion technique, indicated broad-spectrum of activity with significant (P < 0.05) high potencies compared with the controls against Staphylococcus aureus(SA): Staphylococcus epidermides, Staphylococcus saprophyticus (SS); ?-lactamase-positive (methicillin-resistant) Staphylococcus aureas (MRSA); Bacillus subtilis (BS); Streptococcus pyogenes (SP); Escherichia coli (EC)’ Salmonella typhi (ST); Pseudomonas aeruginosa( PA); Shigella dysentariae (SD); Vibrio cholerae (VC) Klebsiella pnuemoniae (KP); Proteus mirabilis (PM).The mode of activity of the agent assayed by macrobroth dilution technique, indicated bacteriostatic activity with high stability or potency to ?- lactamase activity and relatively low MIC (0.06 mg/ml P.E) for SS, MRSA, SP, ST, SD and VC; but higher for both EC (0.24 mg/ml P.E) and PA (0.48 mg/ml P.E) respectively compared with the control. The antibiotic substance was relatively non-toxic with an LD50 of 3.8 mg/ml P.E/Kg and a large therapeutic index of 7.92. The AS-SK2 agent offered high rate of protection to the experimental animals challenged intraperitoneally with both the pathogens and antibiotics substances against the successful establishment of the infections by the ?- lactamase producing Gram-positive and Gram-negative bacteria. Of particular interest is the activity against the MRSA which recorded 100% protection, while EC only recorded 33.3% protection and PA recorded no protection but 100% mortality.
Téléchargements
Renseignements sur l'article
Cette œuvre est sous licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.
Références
Alanis AJ (2005). Resistant to antibiotics: Are we in the post-antibiotics era? Arch. Med. Res., 36: 697-705.
Annonymous (2004). Brief report: vancomycin-resistant Staphylococcus aureus. New-York MAR, 53: 322-323.
Barja, JL, Lemor, ML, Taranzo, AE (1989). Purification and characterization of an antimicrobial substance produced by a marine bacterium – Alteromonas species. Antimicrob. Agents Chemother., 33:1674 – 1679.
Baron JE, Finegold SM (1990). Methods for Testing Antimicrobial Effectiveness. In Mosby CV editor Bailey Scotts Diagnostics Microbiology (Sed). C. Mousby Publishers. Missouri, USA P. 171 – 184.
Bozdogan B, Eisel D, Whitener C (2003.) Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hemshey Medical Centre. J. Antimicrob Chemother, 52:864-868.
Brown DF, Reynolds PE (1980). Intrinsic resistance to ?-lactam antibiotics in Staphylococcus aureus. FEBS Lett, 122:275 – 278.
Chang S, Sievertt DM, Hageman JC (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the van A resistant gene. New Eng. J.Med., 348:1342-1347.
Collins CH, Lyne A. (1979). Microbiological Methods (4thed) Butterworth, London, . 416 –4 24.
Davies J (1984). Microbial resistance to antimicrobial agents In: Ristuccia AM, Cunda BA editors. Antimicrobial Therapy. Raven press, New York; pp. – 125.
Davies J (1994). Inactivation of antibiotics and the dissemination of resistance genes .Science, 264: 375 – 382.
Davies J (1979). General mechanism of antimicrobial resistance. Rev. Infr. Dis., 1: 23 – 28.
Duthie R, Denning DW (1995). Aspergillus fungemia: reports of two cases and review. Clin. Inf. Dis., 20:598-605.
Ekong, US, Mgbor NC, Moneke AN, Obi SKC (2004). Evaluation of the antimicrobial and some pharmacokinetic properties of an antibiotic substance produced by an environmental Aspergillus species SK2 isolated from Nigerian soil. Nig. J. Microbiol., 18: (1 – 2): 199 – 206.
Ekong US, Ubulom PME, Akpabio EI, Uzondu LA, Ibezim EC (2013). Antimicrobial spectra and activities of antibiotic substances from Streptomyces species against sensitive and resistant microorganisms. J. Pharm. Allied Sci., 10 (2): 1771 – 1787.
Enright CM (2003). The evolution of a resistant pathogen-the case of RSA.Curr.Opin.Pharmacol.,3 (5): 474-497.
Fuerst, R (1978). Frosbisher and Fuerst’s Microbiology in Health and Diseases (14 ed).W. B. Saunders, Company Philadelphia, USA.
Germaud, P, Touchaise E (1995). Allergic broncho pulmonary aspergillosis treated ithitraconazole. Chest, 7: 56-74.
Gutmann, L., Williamson R., Moreau N, Kitzies MD, Collatz E, AcarJF, Goldstein FN (1985). Cross- resistance to nalidixic acid, trimethoprim and chloramphenicol associated with alteration in outer membrane proteins of Klebsiella, Enterobacter and Serratia J. Infec. Dis., 151: 501-507.
Hiramatsu K (1998) Vancomycin resistance in staphylococci. Drug |Resis. Update, 1:135-150.
Hiramatsu K, Hanaki |H, Ino T, Oguri T, Tenover FC. (1997).Methicillin-resistant Staphylococcus aureus clinical strains with reduced vancomycin susceptibility. J. Antimicrob. Chemother., 40:135-136.
Kloos WE, Bannermana, TL (1994). Update on the clinical significance of coagulase-negative Staphylococcus. J. Clin. Microbiol, 33: 1060-1063.
Konemann EW, Allen SD, Jamda,WM, Schreeckenberge, PC, Winn. Jr WC (1984). Introduction to Diagnostic Microbiology, J. B. Lippincott, Philadelphia, USA.
Kurup VP, Banerjee B (2000). Fungal allergens and peptide epitodes. Peptides, 21:559-599.
Levine DP, Fromm BS, Reddy BR (1991). Slow response to vancomycin or vancomycin plus rifampin in the therapy among patients with methicillin-resistant Staphylococcus aureus endocarditis. Ann. Int. Med., 15:674-680.
Lieve L (1974). The barrier functions of the Gram-Negative envelope. Ann. Rev. Aca. Sci., 135: 109 – 127.
Livermore, DM (2003). Bacterial resistance: Origin, epidemiology and impact. Clin Inf. Dis, 36:11 – 23.
Lobia R, Morland A, Peduzzi J (1986). Timentin and ?-lactamases. J. Antimicrob. Chemother., 17(Suppl.C): 17 – 26.
Lorke, AD (1985). A new approach to practical acute toxicity testing. Arch. Toxicol. 54: 275 – 287.
Main S, Dorai-Schneiders T, Amyes, SGB, Young HK (1999) Characterization of a novel impanel hydrolyzing ?-lactamase in Klebsiella pnuemoniae. J. Med. Microbiol., 48:1136 – 1146.
Massiva I, Mobashery, S (1998). Kinship and diversification of bacterial penicillin- binding proteins and ?-lactamases. Antimicrob., Agents Chemother., 42:1 – 17.
Matsumara, M, Mori T, Yamada K, Irie S, Oshimi, K, Suda, K, Ogugi, T, Ichonoe, M . (1998). systemicaspergillosis caused by an aflatoxin-producing strain of Aspergillus flavus. Med. Mycol., 36: 107-112.
Mgbor, NC, Umeh. RE (2002). A blind parallel comparative study of the efficacy and safety of rovamycin versus augmentin in the treatment of acute-otitis media.West Afri. J. Med. 21(2_: 117-200.
Moulain F, Bryan LE (1986). Modification of penicillin-binding proteins as mechanisms of ?-lactam resistance. Antimicrob. Agents chemotherapy., 30:1-5.
National Committee for Clinical Laboratory Standards, NCCLS (1997). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Document M7 – A4, NCCLS, Villanova, PA, USA.
Neu HC (1983). The emergence of bacterial resistance and its empirical therapy.Rev. Inf. Dis. 5:59- 63.
NeuHC (1984). Changing mechanisms of bacterial resistance. Amer. J. Pred., 77;11 – 13.
Nikaido H (1989). Outer membrane barrier, as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother., 33:1831 – 1836.
Nikaido, H, Rosenberg, EY, Foulds J (1983). Porin channels in Escherichia coli; Studies with ?-lactamase in infect cells. J. Bactriol, 153: 232 – 240.
Nikaido H, Normark S (1987). Sensitivity of Escherichia coli to various ?-lactamsis determined by the interplay of outer membrane permeability and degradation of periplasmic ?-lactamases: a qualitative predictive treatment. J. Mol. Biol. 1:29 – 36.
Nikaido H (1976). Outer membrane of Salmonella typhimarium; Trans membrane diffusion of some hydrophobic compounds. Arch. Biol. Biophyl 438: - 118 – 132.
O’Callaghan CH (1983). Assessment of New Antibiotics. In: Hugo WB, Russell AD editors. Pharmaceutical Microbiology. Blackwell Scientific Publication, Oxford UK, P. 122 – 139.
Orbritsch MD, Fish, DN, Machren R, Jang R. (2004). National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993- 2002. Antimicrob. Agents Chemother., 48:4606- 4610.
Patterson DL, Ko WC, Von-Gottberg, A, Mohapatra, S, Casellas, JM, Goessens, H, Mulazimoglu, L, Treaholme, G, Klugma, KP, Bonomo, RA, Rice LB, Wagner MM Mc Cormack JG, Yu VL (2004). International prospective study of Klebsiella pnuemoniae bacteremia: implications of extended spectrum beta-lactamase production in nosocomial infections. Ann. Intern.Med.,140:26-32.
Pena C, Pujol, M, Ardanmy, C. Ricart, A, Pallaires, R, Linaires, J. Ariza, J, Guidol, F (1998). Epidemiology and successful control of a large outbreak due to Klebsiella pnuemoniae producing extended-spectrum ?-lactamases.Antimicrob. Agents Chemother: 42:53 – 58.
Phillipon A, Labia R, Jacoby G (1989). Extended spectrum of ?-lactamase. Antimicrob. Agents Chemother., 38:1131 – 1136.
Pulverer, G, Peters G, Kunstmann, G (1986). In vitro activity of ticarcillin with and without calvulanic acid against clinical isolates of Gram-positive and Gram-negative bacteria. J. Antimicrob. Chemother, 17 (Suppl.C) 1 – 5
Reynolds PE, Brown DFG (1985). Penicillin-binding proteins of B-lactam resistant strains of Staphylococcus aureus. FEB Lett., 192: 28:32.
Rosenberg E, Cohen, IR, (1983). Antibiotics and other valuable microbial chemicals. In: Microbial Biology, Sanders Publishing Hott-Sanders, USA, p. 280 – 299.
Roy CC, Sequra, C, Tirado, M, Reig, H, Hermida, M, Terues, D, Fo, A. (1985). Frequency of plasmid determined ?-lactamases in 680 consecutively isolated strains of Enterobacteriaceae. Eur. J. Clin. Microbiol., 4:146 – 147.
Sahin N, Ugur A (2003). Investigation of the anti-microbial activity of some Streptomyces isolates. Turk. J. Biol. Sci., 27:79-84.
Sanders CC, Sanders-Jr WE (1985). Microbial resistant to new generation of ?-lactam antibiotics: clinical and laboratory implications. J. Inf. Dis, 151:399-406.
Sanders CC, and Watakunakorn C. (1986). Emergence of resistance to ?-lactams, aminoglycosides and quinolones during a combination therapy for infection due to Serratiamarcescens. J. Inf. Dis., 153:617 – 619.
Sirot J, Channel C, Petit A, Sirot D, Labis, R, Gerbaud, G (1988). Klebsiella pnuemoniae and other Enterobacteriaceae producing novel plasmid-medicated ?-lactamase markedly active against the third generation cephalosporins; Epidemiologic studies. Rev. Inf. Dis., 10:850 – 859.
Skyes, RB, Matthew M (1976). The ?-lactamase of Gram-negative bacteria and their role in resistance to ?-lactam antibiotics. J. Antimicrob. Chemother., 2”115 – 157.
Spencer RC, Whent, PE, Winsteinten, TG, Cox DM, Plested,SJ (1987). Novel ?-lactamases in a clinical isolates of Klebsiella pnuemoniae conferring unusual resistance to ?-lactam antibiotics. Antimicrob. Agents Chemother., 20:919 – 921.
Tilton RC, Howard BJ (1987). Antimicrobial Susceptibility Testing.In: Howard BJ et al., editors: Clinical and Pathogenic Microbiology, C.V. Mosby Publishers, Missiouri, USA. P. 121- 156.
Vaara M, Vaara T (1983). Polycations sensitized enteric bacteria to antibiotics. Antimicrob. Agents Chemother 2-4: 107 – 113.
Werner V, Sanders CC, Sanders Jr. WE, Gvering, RV (1985). Role of ?-lactamases and outer membrane protein in multiple ?- lactam resistance of Enterobacter cloacae. Antimicrob. Agents Chemother., 21:455 – 459.
World Health Organization (1996). The World Health Report 1996. Fighting diseases fostering development, WHO, Geneva, Switzerland.