Phenotypic Detection of ESBL Production and Colistin Resistance in Escherichia Coli From Urinary Tract Infections In A Tertiary Institution In Nigeria.
Main Article Content
Abstract
Background: Antimicrobial-resistant bacteria, particularly Escherichia coli, which produce ESBLs and the mcr1 gene, can cause urinary tract infections (UTIs) that can be fatal because there are few effective treatments. This study aims to determine the co-production of colistin resistance genes in ESBL-producing E. coli and their antibiotic susceptibility pattern from suspected UTIs in Aminu Kano Teaching Hospital using phenotypic techniques.
Method: Seventy-one (71) E. coli isolates obtained from patients with suspected urinary tract infections were studied. The identity of the isolates was confirmed using standard biochemical tests. Antibiotic susceptibility testing was carried out using the Kirby-Bauer Disc Diffusion Technique. Screening for ESBL production and colistin resistance was done using the Clinical Laboratory Standards Institute breakpoint. Suspected ESBL producers were subjected to confirmation using the Double Disc Synergy Test. Standard Discs of Augmentin (AMC 30µG, Oxoid England), Ceftazidime (CAZ 30µG, Oxoid England) and Cefotaxime (CTX 30µG, Oxoid England) were used for the screening and confirmation.
Results: Screening for ESBL production showed 67.6% suspected ESBL-producing E. coli. The Double Disc Synergy Test showed 22.9% confirmed ESBLs producing E. coli. Co-production of ESBLs and colistin resistance gene was 9.1%. Antimicrobial sensitivity of the ESBLs producing organisms showed 100% resistance to augmentin, ceftriaxone, ceftazidime and cefotaxime, while resistance to gentamicin was 90.1%, chloramphenicol 72.7%, nitrofurantoin 54.5%, ciprofloxacin 90.9% and cotrimoxazole 90.9%. A 100% sensitivity to imipenem was also observed.
Conclusion: ESBL-producing E. coli are present in Aminu Kano Teaching Hospital and are resistant to commonly prescribed antibiotics.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Ronald AR, Nicolle LE, Stamm E. Urinary tract infection in adults: research priorities and strategies. Int J Antimicrob Agents. 2001;17:343-8 https://doi.org/10.1016/s0924 8579(01)00303-x
Tenney, J., Hudson, N., Alnifaidy, H., Li, J. T. C. and Fung, K. H. (2018). Risk factors for acquiring multidrug-resistant organisms in urinary tract infections: a systematic literature review. Saudi Pharmaceutical Journal, 26(5), 678-684. https://doi.org/10.1016/j.jsps.2018.02.023
Miranda S, Davide M, Peter J. Evolution of multi-resistance plasmids in Australia clinical isolates of Escherichia coli. Microbiology. 2004;150:1539-46 https://doi.org/10.1099/mic.0.26773-0
Aljanaby, A. A. J., and Alhasani, A. H. A. (2017). Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. African Journal of Microbiology Research, 10(22), 829-843. http://dx.doi.org/10.5897/AJMR2016.8051
Khalid, H.M., Yousif, S.Y. and Jubrael, J.M.S. (2017). Bacteriological and Molecular characterization of extended spectrum beta lactamases in clinical isolates of Klebsiella pneumoniae isolated from Kurdistan region, Iraq. Science Journal of University of Zakho, 1(1), 158-163
Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for ?lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211-33 https://doi.org/10.1128/aac.39.6.1211
Chauhan S, Mahawal BS, Ramola DC (2015). Extended spectrum ?-lactamases in urinary isolates of Escherichia coli prevalence and susceptibility pattern at a tertiary care hospital. Int J Res Med Sci. Jul;3(7):1622-6. https://doi.org/10.18203/2320-6012.ijrms20150240
Rupp, M. E., and Fey, P. D. (2003). Extended spectrum ? lactamase (ESBL)-producing Enterobacteriaceae. Drugs, 63(4), 353-365. https://doi.org/10.2165/00003495-200363040-00002
Olonitola, O. S., Olayinka, A. T., Inabo, H. I., and Shaibo, A. M. (2007). Production of extended spectrum beta-lactamases of urinary isolates of Escherichia coli and Klebsiella pneumoniae in Ahmadu Bello University Teaching Hospital, Zaria, Nigeria. International Journal of Biological and Chemical Sciences, 1(2), 181-185. https://doi.org/10.4314/ijbcs.v1i2.39689
Olowe, O. A., and Aboderin, B. W. (2010). Detection of extended spectrum ?-lactamase producing strains of (Escherichia coli) and (Klebsiella sp.) in a tertiary health centre in Ogun State. International Journal of Tropical Medicine, 5(3), 62-64. http://dx.doi.org/10.3923/ijtmed.2010.62.64
Yusha’u, M., Aliyu, H. M., Kumurya, A.S. and Suleiman, K. (2010) Prevalence of extended-spectrum ?-lactamases (ESBLs) among Enterobacteriaceae in Murtala Mohammed Specialist Hospital, Kano, Nigeria. Bayero Journal of Pure and Applied sciences, 3(1): 169- 172. https://doi.org/10.4314/bajopas.v3i1.58756
Ogefere, H. O., Aigbiremwen, P. A., and Omoregie, R. (2015). Extended-spectrum beta-lactamase (ESBL) producing Gram-negative isolates from urine and wound specimens in a tertiary health facility in southern Nigeria. Tropical Journal of Pharmaceutical Research, 14(6), 1089-1094. https://doi.org/10.4314/tjpr.v14i6.22
Mohammed, Y., Gadzama, G. B., Zailani, S. B., and Aboderin, A. O. (2016). Characterization of extended spectrum beta-lactamase from Escherichia coli and Klebsiella species from North Eastern Nigeria. Journal of clinical and diagnostic research: JCDR, 10(2), DC07. https://doi.org/10.7860%2FJCDR%2F2016%2F16330.7254
Sharma, J., Sharma, D., Singh, A., and Kumari, S. (2022). Colistin resistance and management of drug resistant infections. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 1-10.
Anyanwu, M., Okpala, C., Chah, K., & Shoyinka, V. (2021). Prevalence and traits of mobile colistin resistance gene harbouring isolates from different ecosystems in africa. Biomed Research International, 2021, 1-20.
Zhang, S., Abbas, M., Rehman, M. U., Wang, M., Jia, R., Chen, S., Liu, M., Zhu, D., Zhao, X. and Gao, Q. (2021). Updates on the global dissemination of colistin-resistant Escherichia coli: An emerging threat to public health. Science of The Total Environment, 799, 149280.
Rozenkiewicz D, Esteve-Palau E, Arenas-Miras M, Grau S, Duran X, Luisa Sorlí L, Montero MM and Horcajada JP. (2021). Clinical and Economic Impact of Community-Onset Urinary Tract Infections Caused by ESBL Producing Klebsiella pneumoniae Requiring Hospitalization in Spain: An Observational Cohort Study. Antibiotics, 10(585): 1-10.
Mlynarcik, P., and Kolar, M. (2019). Molecular mechanisms of polymyxin resistance and detection of mcr genes. Biomedical Papers of the Medical Faculty of Palacky University in Olomouc, 163(1).
Kaye, K. S., Pogue, J. M., Tran, T. B., Nation, R. L., and Li, J. (2016). Agents of last resort: Polymyxin resistance. Infectious Disease Clinics, 30(2), 391–414.
Mahmoud AT, Salim MT, Ibrahem RA, Gabr A and Halby HM. (2020). Multiple Drug Resistance Patterns in Various Phylogenetic Groups of Hospital-Acquired Uropathogenic E. coli isolated from Cancer Patients. Antibiotics, 9(3): 108.
Cao, L., Li, X., Xu, Y., and Shen, J. (2018). Prevalence and molecular characteristics of mcr-1 colistin resistance in Escherichia coli: Isolates of clinical infection from a Chinese University Hospital. Infection and Drug Resistance, 1597–1603.
Shen, Y., Wu, Z., Wang, Y., Zhang, R., Zhou, H. W., Wang, S., Lei, L., Li, M., Cai, J., and Tyrrell, J. (2018). Heterogeneous and flexible transmission of mcr-1 in hospital associated Escherichia coli. MBio, 9(4), 10 1128.
Cheesbrough, M. (2000). Microbiological test: District Laboratory Practice in Tropical Countries. In: Cremer, A. and Evan, G. (eds). Cambridge University Press, UK. Pp: 1-226
CLSI (2010) Clinical and Laboratory Standards Institute. Performance standard for antimicrobial susceptibility testing. 22nd informational supplement ;32:M100- S22.
CLSI (2016) Clinical and Laboratory Standards Institute. Performance standard for antimicrobial susceptibility testing. 22nd informational supplement ;32:M100- S22.
National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility test, 7th edition. approved standards, NCCLS Document M2 A7,Vol. 20(1): Wayne PA, 2000. Dis. 1988;10: 867- 78
CLSI - Clinical and Laboratory Standards Institute (2021). Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI Supplement M100, Wayne, PA., USA
Griebling, T.L. (2007) Urinary Tract Infection in Women. In: Litwin MS, Saigal CS, editors. Urologic Disease in America. Washington, DC: NIH Publication: pp. 587–619.
Randrianirina, F., Soares, J.L., Carod, J.F., Ratsima, E., Thonnier, V., Combe, P., Grosjean, P., Talarmin, A. J. (2007) Antimicrobial resistance among uropathogens that cause community acquired urinary tract infections in Antananarivo, Madagascar. Antimicrobial Chemotherapy 59(2), 309-12. https://doi.org/10.1093/jac/dkl466
Fauci, A. S., Brunwald, E., Kasper, D. L., Longo, D. L., Hauser, S. L., Jameson, J. L. and Loscallo, J. (2008). Disorder of the urinary and kidney tract. Harrison’s: Principles of Internal Medicine, 17, 18.
Habte, T. M., Dube, S., Ismail, N. and Hoosen, A. A. (2009). Hospital and community isolates of uropathogens at a tertiary hospital in South Africa. South African Medical Journal, 99(8).
Yismaw, G., Asrat, D., Woldeamanuel, Y., andUnakal, C. G. (2012). Urinary Tract Infection:Bacterial etiologies, drug resistance profile and associated risk factors in diabetic patients attending Gondar University Hospital, Gondar, Ethiopia. European Journal of Experimental Biology, 2(4), 889-898.
Ahmad, S. (2012). Pattern of urinary tract infection in Kashmir and antimicrobial susceptibility. Bangladesh Medical Research Council 10.3329/bmrcb.v38i3.14330 Bulletin, 38(3), 79-83.
Anejo-Okopi, A.J, Okwori A.E.J, Eze M.I, Onaji A.I,Ali, M, Adekwu A,Ejiji I.S (2015) prevalence and antibiotic resistance pattern of urinary tract bacterial infections among symptomatic patients attending university of maiduguri teaching hospital, north east Nigeria European Journal of Advanced Research in Biological and Life Sciences.3(3), 31-41
Salvatore, S., Cattoni, E., Siesto, G., Serati, M., Sorice, P., Torella, M. (2011) Urinary tract infections in women. European journal of obstetrics, gynecology, and reproductive biology. 156(2), 131–6. https://doi.org/10.1016/j.ejogrb.2011.01.028
Ehinmidu, J.O. (2003). Antibiotics susceptibility patterns of urine bacterial isolates in Zaria, Nigeria. Journal of Tropical Pharmaceutical Research https://doi.org/10.4314/tjpr.v2i2.14603 2(1), 223-228.
El-Mahmood, A.M., Atimi, A.T., Tirmidhi, B. and Mohammed, A.(2009) Antimicrobial susceptibility of some quinolone antibiotics against some urinary tract pathogens in a tertiary hospital, Yola, Adamawa State, Nigeria. Journal of Clinical Medicine and Research 1(1), 26-34. https://doi.org/10.5897/JCMR.9000007
Mansour A, Mahdinezhad M and Pourdangchi Z 2009 Study of bacteria isolated from urinary tract infections and determination of their susceptibility to antibiotics. Jundishapur J. Microbiol. 2(3): 118-123.
Pondei, K., Oladapo, O. and Kunle-Olowu, O. E. (2012). Anti-microbial susceptibility pattern of micro-organisms associated with urinary tract infections in a tertiary health institution in the Niger Delta Region of Nigeria. African Journal of Microbiology Research, 6(23), 4976-4982. http://dx.doi.org/10.5897/AJMR12.086
Iregbu, K. C. and Nwajiobi-Princewill, P. I. (2013). Urinary tract infections in a tertiary hospital in Abuja, Nigeria. African Journal of Clinical and Experimental Microbiology, 14(3), 169-173. https://doi.org/10.4314/ajcem.v14i3.9
Alanazi MQ, Alqahtani FY and Aleanizy FS 2018 An evaluation of E. coli in urinary tract infection in Emergency Department at KAMC in Riyadh, Saudi Arabia: retrospective study. Ann. Clin. Microbiol. Antimicrob. 17(1): 3. https://doi.org/10.1186/s12941-018-0255-z
Adabara N.U, Bakinde N.D, Enejiyon S.O, Salami T and Iorzua D (2020). Detection of Extended Spectrum Beta Lactamase Producing Escherichia coli from Urinary Tract Infection in General Hospital, Minna Tanzania Journal of Science 46(3): 613-619, https://dx.doi.org/10.4314/tjs.v46i3.3 2020
Yusha’u, M., Aliyu, H. M., Kumurya, A.S. and Suleiman, K. (2010) Prevalence of extended-spectrum ?-lactamases (ESBLs) among Enterobacteriaceae in Murtala Mohammed Specialist Hospital, Kano, Nigeria. Bayero Journal of Pure and Applied sciences, 3(1): 169- 172. https://doi.org/10.4314/bajopas.v3i1.58756
Ullah, F., Malik, S.A and Ahmed, J (2009). Antibiotic susceptibility pattern and ESBLs prevalence in nosocomial Escherichia coli from urinary tract infections in Pakistan. African Journal of Biotechnology 8(16), 3921-3926
Babypadmini, S. and Appalaraju, B. (2004). Extended spectrum-lactamases in urinary isolates of Escherichia coli and Klebsiella pneumoniae-prevalence and susceptibility pattern in a tertiary care hospital. Indian Journal of Medical Microbiology, 22(3), 172. https://doi.org/10.1016/S0255 0857(21)02830-9
Mekki, A. H., Hassan, A. N. and Elsayed, D. E. M. (2010). Extended spectrum beta lactamases among multi drug resistant Escherichia coli and Klebsiella species causing urinary tract infections in Khartoum. African Journal of Bacteriology Research, 2(3), 18-21 https://doi.org/10.5001%2Fomj.2013.30
Ejaz, H., Zafa, A., Mahmood, S. and Javed, M. M. (2011). Urinary tract infections caused by extended spectrum ? lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae. African Journal of Biotechnology, 10(73), 16661-16666. https://doi.org/10.5897/AJB11.2449
Bonnet, R. (2004). Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrobial Agents and Chemotherapy, 48(1), https://doi.org/10.1128/aac.48.1.1-14.2004 1-14.
Chaturvedi A, Sisodia R ,Sharma N, Chaturvedi A, Rathore M, Sharma R (2020). Phenotypic detection and antibiotic susceptibility pattern of ESBL producing Escherichia coli from UTI patients at a tertiary care hospital in Jaipur JMSCR 08(12)253-262. https://dx.doi.org/10.18535/jmscr/v8i12.44
Hassen B., Hammami S., Hassen A., and Abbassi M.S. (2022). Molecular mechanisms and clonal lineages of colistin resistant bacteria across the African continent: a scoping review. Letters in Applied Microbiology; 75: 1390-1422.
Egwuatu T.O., Ishola O.D. and Oladele O.E. (2021). The distribution of extended spectrum Beta-lactamase genes in fomites, healthcare workers, and patients from two hospitals in Lagos State, Nigeria. Ife Journal of Science; 23(2): 015-024.
Nuhu, T., Olawale, S. A., & Raji, M. I. O. (2024). Evaluation of Co-production of Colistin Resistance and ESBL Genes among Gram-negative Clinical Isolates from Usmanu Danfodiyo University Teaching Hospital Sokoto, Nigeria. UMYU Journal of Microbiology Research (UJMR), 9(1), 134–146. https://doi.org/10.47430/ujmr.2491.015