Transgenic Animals: The promise and peril of genetic modifications
Main Article Content
Abstract
Background: Transgenic animals, developed through genetic engineering techniques, have revolutionized biomedical research, agriculture, and pharmaceutical production. By introducing foreign DNA into animal genomes, scientists have enhanced traits such as disease resistance, improved food production, and enabled the generation of biopharmaceuticals. Despite these advancements, concerns regarding ethical implications, biosafety, and environmental risks remain. This review explores the methodologies, applications, and potential risks associated with transgenic animal technology.
Methods: A comprehensive literature review was conducted, analyzing peer-reviewed articles and experimental studies on transgenic animal technology. Key methods used in generating transgenic animals, including vector-mediated gene transfer, DNA microinjection, sperm-mediated gene transfer, testis-mediated gene transfer, and somatic cell nuclear transfer (SCNT), were critically examined.
Results: Transgenic animals have yielded significant advancements in medicine, including the production of recombinant proteins, disease models, and potential organ donors for xenotransplantation. In agriculture, genetic modifications have improved livestock productivity, enhanced nutritional value, and contributed to food security. However, the peril of this genetic modifications of animals, such as unintended genetic mutations and potential biodiversity loss, necessitate stringent biosafety regulations.
Conclusion: While transgenic animals hold immense promise in scientific and medical advancements, their applications must be balanced with ethical considerations and environmental safety measures. Continued research, regulatory oversight, and public engagement are essential to maximize benefits while mitigating risks. Advancements in gene-editing technologies, such as CRISPR, may further enhance the precision and efficiency of transgenic modifications in the future.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
. Jackson, D. A., Symons, R. H. & Berg, P. (1972). Biochemical method for inserting new
Genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules
containing lambda phage genes and the galactose operon of Escherichia coli. Proceedings
National Academy Sciences of the United State of America, 69(10): 2904-2909.
. Cohen, S. N., Chang, A. C., Boyer, H. W. & Helling, R. B. (1973). Construction of biologically
functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of
the United State of America, 70(11): 3240-3244.
. Melo, E. O., Canavessi, A. M., Franco, M. M. & Rumpf, R. (2007). Animal transgenesis: state
of the art and applications. Journal of Applied Genetics, 48: 47-61.
. Ahmad, S. F., Mahajan, K., Gupta, T., Gulzar, M. & Yadav, V. (2018). Transgenesis in
Animals: Principles and Applications – A Review. International Journal of Current
Microbiology and Applied Sciences, 7(10): 2319-7706.
https://doi.org/10.20546/ijcmas.2018.710.358.
. Shakweer, W. M. E., Krivoruchko, A. Y., Dessouki, Sh. M. & Khattab, A. A. (2023). A review
of transgenic animal techniques and their applications. Journal of Genetic Engineering
and Biotechnology, 21(55): 1-14. https://doi.org/10.1186/s43141-023-00502-z.
. Clark, J. & Whitelaw, B. (2003). A future for transgenic livestock. Nature Reviews Genetics,
: 825-833.
. Manmohan, S. & Niraj, K. (2010). Transgenic animals: production and application.
International Journal of Pharmaceutical Sciences and Research (IJPSR), 1(9): 12-22.
. Shankar, K. & Mehendale, H. M. (2014). Transgenic Animals, Encyclopedia of Toxicology,
: 802-803. http://dx.doi.org/10.1016/B978-0-12-386454-3.00356-0.
. Giassetti, M. I., Maria, F. S., Assumpção, M. E. & Visintin, J. A. (2013). Genetic engineering
and cloning: focus on animal biotechnology. In: Genetic Engineering. Manhattan: InTech;
pp. 1-95. https://doi.org/10.5772/56071.
. Ng, P., Parks, R. J., Cummings, D. T., Evelegh, C. M. & Graham, F. L. (2000). An enhanced
system for construction of adenoviral vectors by the two-plasmid rescue method. Human
Gene Therapy, 11: 693–699.
. Srivastava, A., Lusby, E. W. & Berns, K. I. (1983) Nucleotide sequence and organization of
the adeno-associated virus to genome. Journal of Virology, 45: 555–564.
. Hosono, T., Mizuguchi, H., Katayama, K., Xu, Z. L., Sakurai, F., Ishii-Watabe, A., Kawabata,
K., Yamaguchi, T., Nakagawa, S., Mayumi, T. & Hayakawa, T. (2004). Adenovirus vector-
mediated doxycycline inducible RNA interference. Human Gene Therapy, 15: 813-819.
. Nagashima, H., Fujimura, T., Takahagi, Y., Kurome, M., Wako, N., Ochiai, T., Esaki, R.,
Kano, K., Saito, S., Okabe, M. & Murakami, H. (2003). Development of efficient
strategies for the production of genetically modified pigs. Theriogenology 59: 95–106.
. Pinkert, C. (2002). Transgenic animal technology. "A Laboratory Hand- book" 2nd Edition.
Academic Press, Pinkert. https://doi.org/10.1016/ C2009-0-03511-9.
. Wolf, E., Schernthaner, W., Zakhartchenko, V., Prelle, K., Stojkovic, M. & Brem, G. (2000).
Transgenic technology in farm animals: progress and perspectives. Experimental
Physiology, 85: 615–625.
. Dubey, R. C. (2020). Advanced Biotechnology for B.Sc. and M. Sc. Students of biotechnology
and other Biological Sciences, S Chand, New Delhi, India.
. Kim, G. B., Rincon, F. D., Saxon, D., Yang, A., Sabet, S., Dutra- Clarke, M et al. (2019).
Rapid generation of somatic mouse mosaics with locus-specific, stably integrated
transgenic elements. Cell, 179(1): 251–267.
. Brackett, B. G., Baranska, W. & Sawicki, W. (1971). Uptake of heterologous genome by
mammalian spermatozoa and its transfer to ova through fertilization. Proceeding of the
National Academy of Science of the United State of America, 68: 353-357.
. Lavitrano, M., Camaioni, A., Fazio, V. M., Dolci, S., Farace, M. G. & Spadafora, C. (1989).
Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of
mice. Cell 57(5): 717–723. https://doi.org/10.1016/0092- 8674(89)90787-3.
. Shakweer, W. M. E., Hafez, Y. M., El-Sayed, A. A., Awadalla, I. M. & Mohamed, M. I.
(2017). Construction of ovine GH-pmKate2N expression vector and its uptake by ovine
spermatozoa using different methods. Journal of Genetic Engineering and Biotechnology,
: 13-21.
. Shakweer, W. M. E., Hafez, Y. M., El-Sayed, A., Dessouki, Sh. M., Awadalla, I. M. &
Mohamed, M. I. (2019). Uptake of exogenous bovine GH–pmKate2– N expression vector
by rams’ spermatozoa. Bulletin of the National Research Center, 43: 96.
https://doi.org/10.1186/s42269-019-0136-4.
. Wu, G. M., Nose, K., Mori, E. & Mori, T. (1990). Binding of foreign DNA to mouse sperm
mediated by its MHC class II structure. American Journal of Reproductive Immunology,
: 120–126.
. Carballada, R. & Esponda, P. (2001). Regulation of foreign DNA uptake by mouse
spermatozoa. Experimental Cell Research, 261: 104-113.
https://doi.org/10.1006/ excr.2000.5079.
. Monika, A., Szczygiel, S. M.W. & Ward, S. (2003). Expression of foreign DNA is associated
with paternal chromosome degradation in intracytoplas- mic sperm injection-mediated
transgenesis in the mouse. Biology of Reproduction, 68(5): 1903-1910.
https://doi.org/10.1095/biolreprod.102.012377.
. Pereyra-Bonnet, F., Gibbons, A., Cueto, M., Sipowicz, P., Fernández-Martín, R. & Salamone,
D. (2011). Efficiency of sperm-mediated gene transfer in the ovine by laparoscopic
insemination, in vitro fertilization and ICSI. Journal of Reproductive Development, 57(2):
-196.
. García-Vázquez, F. A., Ruiz, S., Grullón, L. A., Ondiz, A. D., Gutiérrez-Adán, A. & Gadea,
J. (2011). Factors affecting porcine sperm mediated gene transfer. Research in Veterinary
Science, 91(3): 446-453.
. Alexsia, L. R., Patricia, J. S. & Smith, G. A. (2016). New tools to convert bacterial artificial
chromosomes to a self-excising design and their application to a herpes simplex virus type
infectious clone. BMC Biotechnology, 16(1): 64.
https://doi.org/10.1186/s12896-016-0295-4.
. Abe, S., Honma, K., Okada, A. et al. (2021). Construction of stable mouse artificial
chromosome from native mouse chromosome 10 for generation of transchromosomic
mice. Scientific Reports,11: 20050. https://doi.org/10.1038/ s41598-021-99535-y.
. Chang, K., Qian, J., Jiang, M., Liu, Y. H., Wu, M. C., Chen, C. D., Lai, C. K., Lo, H. L.,
Hsiao, C. T., Brown, L., Bolen, J. Jr., Huang, H. I., Ho, P. Y., Shih, P. Y., Yao, C. W., Lin,
W. J., Chen, C. H., Wu, F. Y., Lin, Y. J., Xu, J. & Wang, K. (2002). Effective generation
of transgenic pigs and mice by linker-based sperm-mediated gene transfer. BMC
Biotechnology, 2: 1-13.
. Xiangyang, M. (2013). Recent advances in the development of new transgenic animal
technology. Cellular and Molecular Life Sciences, 70: 815-828.
DOI 10.1007/s00018-012-1081-7.
. Blanchard, K. T. & Boekelheide, K. (1997) Adenovirus mediated gene transfer to rat testis
in vivo. Biology of Reproduction, 56: 495-500.
. Sato, M., Ishikawa, A. & Kimura, M. (2002). Direct injection of foreign DNA into mouse
testis as a possible in vivo gene transfer system via epididymal spermatozoa. Molecular
Reproduction and Development, 61: 49-56.
. Wilmut, I. & Whitelaw, C. B. A. (1994). Strategies for production of pharmaceutical proteins
in milk. Reproductive Fertility and Development, 6(5): 625-630.
https://doi.org/10. 1071/RD9940625
. BallP, J. H. & Peters, A. R. (2004). Reproduction in cattle: reproductive biotechnologies, 3rd
ed. pp. 191-214, Blackwell Publishing, Iowa, USA.
. Denning, C., Burl, S., Ainslie, A., Bracken, J., Dinnyes, A., Fletcher, J. & Clark, A. J. (2001).
Deletion of the ? (1,3) galactosyltransferase (GGTA1) gene and the prion protein (PrP)
gene in sheep. Nature Biotechnology, 19(6): 559-562. https:// doi.org/10.1038/89313
. Camara, D., Dimitrova, I., Doynova, M., Jachacz, L., Kachakova, D., Kepka, M. et al.
(2008). Transgenic and cloned animals: ethical problems? EU Socrates Erasmus European
Community. Retrieved from;
https://pdfs.semanticscholar.org/47ae/c3da3ae056065051126c16289b0d7fab2f97.pdf
. Heyman, Y., Vignon, X., Chesn, P., Bourhis, D. L., Marchal, J. & Renard, J. (1998). Cloning
in cattle: from embryo splitting to somatic nuclear transfer. Reproductive Nutrition and
Development, 38(6): 595-603. https://doi.org/10.1051/rnd:19980602.
. Venkateswaran, V., Flesner, N. E., Sugar, L. M. & Klotz, L. H. (2004). Antioxidants block
prostate cancer in lady transgenic mice. Cancer Research, 15: 5891- 5896.
. Moore, C. J. & Mepham, T. B. (1995). Transgenesis and animal welfare. Alternatives
Laboratory Animal, 23: 380-397.
. Masood, E. (1997). Pressure grows for inquiry into welfare of transgenic animals. Nature,
: 311- 312.
. Food and Drug Administration (FDA) (2004). Code of federal regulations, title 21. Website:
www.accessdata.fda.gov/scripts/cdrch/cfdocs/cfcr. CFRSearch.cfm.
. Thiemann, W. J. & Palladino, M. A. (2004). Introduction to biotechnology. In: Animal
biotechnology. Ed. Benjamin comings, San Francisco, CA 94111, pp. 153-168.
. Kawabe, X., Kamihira, M., Ono, I., Yogoku, K., Nishijima, K. I. & Iijima, S. (2006).
Production of SCFv – Fc fusion protein using genetically manipulated quails. Journal of
Bioscience and Bioengineering, 102(4): 297-303.
. Dyck, M. K., Gangne, D., Quelled, M., Seneschal, J. F., Balanger, E., Larcroix, D., Strard,
M. A. & Pother, F. (1999). Seminal vesicle production and secretion of growth hormone
into seminal fluid. Nature Biotechnology, 17: 1087- 1090.
. Setchell, B. P. (1988). In: The physiology of reproduction (ed). Knobile and Neil. J. Raven
press Ltd. New York. pp. 753-836.
. Swanson, M. E., Martin, M. J., Donnell, J. K. O., Hoover, K., Lago, W., Huntress, V., Parson,
C. T. & Pinkert, C. A. (1992). Production of functional haemoglobin in transgenic swine,
Nature Biotechnology, 10: 557-559.
. Keefer, C. L. (2004). Production of bioproducts through the use of transgenic animal models.
Animal Reproduction Science, 83: 5-12.
. Wall, R. J. (1999). Biotechnology for the production of modified innovative animal product,
transgenic livestock bioreactors. Livestock Production Science. 59(2-3): 243-255.
. Boyd Group (1999). Genetic engineering: animal welfare and ethics: a discussion paper from
the Boyd Group. Website: www.boyd-group.demon.co.uk/genmod.htm
Khatib, H. (2005). Monoallelic expression of the protease inhibitor gene in humans, sheep,
and cattle. Mammal Genome, 16(1): 50-58.
. Meade, H. M, Echelard Y, et al. (1999). Expression of recombinant proteins in the milk of
transgenic animals. In Gene expression systems: using nature for the art of expression.
Academic Press, San Diego. John Curling Consulting AB, S-753 29 Uppsala,
Sweden, pp. 399-427.
. Rudolph, N. S. (1999). Biopharmaceutical production in transgenic livestock.
Trends Biotechnology, 17(9): 367-374.
. Ziomek, C. A. (1998). Commercialization of proteins produced in the mammary gland.
Theriogenology, 49(1): 139-144.
. Dyck, M. K., Lacroix, D, Pothier, F. & Sirard, M. A. (2003). Making recombinant proteins
in animals: different systems, different applications. Trends Biotechnology, 21(9): 394-
. Grosse-Hovest, L., Muller, S., et al. (2004). Cloned transgenic farm animals produce a
bispecific antibody for T cell-mediated tumor cell killing. Proceedings of the National
Academy of Sciences, 101(18): 6858-6863.
. Kuroiwa, Y., Kasinathan, P., et al. (2002). Cloned trans-chromosomic calves producing
human immunoglobulin. Nature Biotechnology, 20(9): 889-894.
. Pew Initiative on Food and Biotechnology (2003). Public sentiment about GM food. Website:
www.pewagbiotech.org/research/2003update.
. Kues, W. A. & Niemann, H. (2004). The contribution of farm animals to human health.
Trends Biotechnology, 22(6): 286-294.
. Platt, J. L. & Lin, S. S. (1998). The future promises of xenotransplantation. Annals of the
New York Academy of Sciences, 862(1):5-18.
. Pursel, V. G., Pinkert, C. A., et al. (1989). Genetic engineering of livestock. Science,
(4910): 1281-1288.
. Nottle, M. B., Nagashima, H., et al. (1999). Production and analysis of transgenic pigs
containing a metallothionein porcine growth hormone gene construct. In Transgenic
animals in agriculture. CABI Publishing, New York, 145-156.
. Niemann, H. (2004). Transgenic pigs expressing plant genes. Proceedings of National
Academy of Sciences, 101(19): 7211-7212.
. Saeki, K., Matsumoto, K., et al. (2004). Functional expression of a Delta12 fatty acid
desaturase gene from spinach in transgenic pigs. Proceedings of National Academy of
Sciences, 101(17): 6361-6366.
. Kumar, S., Clarke, A. R., et al. (1994). Milk composition and lactation of ? casein deficient
mice. Proceedings of National Academy of Sciences, 91(13): 6138- 6142.
. Stinnakre, M. G., Vilotte, J. L., Soulier, S., Mercier, J. C. (1994). Creation and phenotypic
analysis of ?-lactalbumindeficient mice. Proceedings of National Academy of Sciences,
(14): 6544-6548.
. Wheeler, M. B. & Walters, E. M. (2001). Transgenic technology and applications in swine
Theriogenology, 56: 1345-1369.
. Wheeler, M. B., Bleck, G. T. & Donovan, S. M. (2001). Transgenic alteration of sow milk
to improve piglet growth and health. Reproduction, 58: 313-324.
. Damak, S., Su, H., Jay, N. P. & Bullock, D. W. (1996a). Improved wool production in
transgenic sheep expressing insulin-like growth factor 1. Biotechnology, 14(2): 185-188.
. Damak, S., Jay, N. P., Barrell, G. K. & Bullock, D. W. (1996b). Targeting gene expression
to the wool follicle in transgenic sheep. Biotechnology, 14(2): 181-184.
. Muller, M. (1992). Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein
which confers resistance to influenza virus infection. Gene, 121(2): 263-270.
. Imoto, T., Johnson, L. N., North, A. T., Philips, D. C. & Rupley, J. A. (1972). Vertebrate
lysozyme. In:The enzyme vol.7 P.D. Boyer, (Ed), Academic Press, New York. NY. pp.665-
. Parry, R. M. (1994). Transgenic livestock as genetic models of human disease. Reproduction,
Fertility and Development, 6(5): 643-645.
. Yu, Z., Meng, Q., Yu, H., Fan, B., Yu, S., Fei, J., Wang, L., Dai, Y. & Li, N. (2006). Expression
and Bioactivity of Recombinant Human Lysosome in the Milk of transgenic mice, Journal
of Dairy Science, 89(8): 2911-2918.
. Limonta, J. M., Castro, F. O., Matinez, R., Puentes, P., Ramos, B., Aguilar, A., Lieonart, R.
L. & Fuente, J. L. (1995). Transgenic rabbits as bioreactor for the production of human
growth hormone. Journal of Biotechnology, 40: 49-58.
. Peter, C. H. & Mehul, T. D. (2006). Use of Growth Hormone in Children, Nature Clinical
Practice Endocrinology & Metabolism, 2: 260-268.
. Pursel, V. G. (1995). Can you tell if any of these animals are transgenic? Your world
biotechnology and you, 5(1): 1- 16.
. Hout, V. D. (2004). Long term intravenous treatment of pompe’s disease with recombinant
human 2-glucosidase from milk. Pediatric, 113(5): 448- 457.
. Xu, J., Zhao, J., Wang, J., Zhao, Y., Zhang, L., Chu, M. & Li, N. (2011). Molecular-based
environmental risk assessment of three varieties of genetically engineered cows.
Transgenic Resource, 20(5): 1043–54. https://doi.org/10.1007/ s11248-010-9477-3.
. Wheeler, M. B. (2007). Agricultural applications for transgenic livestock. Trends
Biotechnology, 25(5): 204-210. https://doi.org/10.1016/j.tibtech.2007.03. 006.
. Van Berkel, P. H., Welling, M. M., Geerts, M., van Veen, H. A., Ravensbergen, B., Sala-
heddine, M. et al. (2002). Large scale production of recombinant human lactoferrin in the
milk of transgenic cows. Nature Biotechnology, 20: 484-487.
. Verhoog, H. (2003). Naturalness and the genetic modification of animals. Trends
Biotechnology, 21(7): 294-297. https://doi.org/10.1016/S0167-7799(03) 00142-2.
. Houdebine, L. M. (2005). Use of transgenic animals to improve human health and animal
production. Reproduction in Domestic Animals, 40: 269-281.
. Houdebine, L.M. (2014). Impacts of genetically modified animals on the ecosystem and
human activities. Global Bioethics, 25(1): 3-18.
https://doi. org/10.1080/11287462.2014.894709.
. Bruggemann, E. P. (1993). Environmental safety issues for genetically modified animals.
Journal of Animal Science, 71(3): 47-50. https://doi.org/10.2527/1993. 71suppl_347x.
. Muir, W. M. & Howard, R. D. (2002). Assessment of possible ecological risks and hazards
of transgenic fish with implications for other sexually reproducing organisms. Transgenic
Resource, 11: 101–114. https://doi.org/10.1023/A: 1015203812200.