Resources Recovery from Mussel shells for the Synthesis and Application of CaO nanoparticles for the Adsorption Remediation of Crystal Violet Contaminated Water

Main Article Content

Anduang O. Odiongenyi
Richard Alexis Ukpe
Iniobong S. Enengedi,
Ifiok O. Ekwere
Clement O. Obadimu

Abstract

Background: In consideration of the need for effective solid waste management through resource recovery and advanced environmental application techniques, we investigated the potential of mussel shell as a precursor for the synthesis of calcium oxide nanoparticles due to their high content of CaCO3.


 


Method: Calcium oxide nanoparticles were fabricated from mussel shell wastes (using sol gel method), characterized and applied in the adsorption remediation of crystal violet contaminated water.


 


Results: The nanoparticles have an average particle size of 2.94 nm, pore volume of 0.254 cc/g and BET surface area of 302 m2/g. It showed intense FTIR and UV absorption at 1400 cm-1 and 238 nm respectively. The band gap and pH at zero charged were also evaluated as 7.1 and 7.2 eV respectively, which indicated that the particles absorb in the UV region and favour the adsorption of crystal violet dye in the basic pH. An increase in temperature decreases the efficiency of the nanoparticles towards the removal of the dye while the removal was favoured by increasing the dye concentration, dosages of the adsorbent, time and ionic strength. The maximum removal efficiency of almost 100% was observed after 1 hour period of contact and at the adsorbate concentration of 100 ppm.


 


Conclusion: The nanoparticles showed an average of 98% recovery capacity after three times re-used and they are thermally stable above 600 °C.  

Downloads

Download data is not yet available.

Article Details

How to Cite
O. Odiongenyi, A., Alexis Ukpe, R., S. Enengedi, I., O. Ekwere, I., & O. Obadimu, C. (2023). Resources Recovery from Mussel shells for the Synthesis and Application of CaO nanoparticles for the Adsorption Remediation of Crystal Violet Contaminated Water. Nigerian Journal of Pharmaceutical and Applied Science Research, 12(1), 19–36. https://doi.org/10.60787/nijophasr-v12-i1-505
Section
Articles

References

Shao, P.; Yin, H., Li, Y.; Cai, Y., Yan, C.; Yuan, Y. ‘Dang, Z.. Remediation of Cu and As contaminated water and soil utilizing biochar supported layered double hydroxide: Mechanisms and soil environment altering. Journal of Environmental Sciences, 2023, 26, 275-286, https://doi.org/10.1016/j.jes.2022.05.025.

Chen, W.; Chen, Y.; Shu, Y.; He, Y.; Wei, J. Characterization of solid, liquid and gaseous products from waste printed circuit board pyrolysis. Journal of Cleaner Production, 2021, 313, https://doi.org/10.1016/j.jclepro.2021.127881.

Slama, H. B.; Chenari Bouket, A.; Pourhassan, Z.; Alenezi, F. N.; Silini, A.; Cherif-Silini, H.; Oszako; T.; Luptakova; L.; Goli?ska, P.; Belbahri, L. . Diversity of synthetic dyes from textile industries, discharge impacts and treatment Methods. Appl. Sci., 2021, 11, 6255, https://doi.org/10.3390/app11146255.

Eddy, N. O.; Ukpe, R. A.; Ameh, P.; Ogbodo, R.; Garg, R.; Garg, R. (2022)a. Theoretical and experimental studies on photocatalytic removal of methylene blue (MetB) from aqueous solution using oyster shell synthesized CaO nanoparticles (CaONPO). Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-022-22747-w

Mirza, A.; Ahmad, R. An efficient sequestration of toxic crystal violet dye from aqueous solution by Alginate/Pectin nanocomposite: A novel and ecofriendly adsorbent. Groundwater for Sustainable Development, 2020, 11,https://doi.org/10.1016/j.gsd.2020.100373.

Oloo, C.; M., Onyari, J. M.; Wanyonyi, W. C.; Wabomba, J. N.; Muinde, V. M. (2020). Adsorptive removal of hazardous crystal violet dye form aqueous solution using Rhizophora mucronata stem-barks: Equilibrium and kinetics studies. Environmental Chemistry and Ecotoxicology, 2020, 2, 64-72.https://doi.org/10.1016/j.enceco.2020.05.001.

Ahmad, R.; Ansari, K. (2020). Polyacrylamide-Grafted Actinidia deliciosa peels powder (PGADP) for the sequestration of crystal violet dye: isotherms, kinetics and thermodynamic studies. Appl Water Sci, 2, 10, 195, https://doi.org/10.1007/s13201-020-01263-7.

Gomaa, H.; Abd El-Monaem, E. M.; Eltaweil, A. S.; Omer, A. M. Efficient removal of noxious methylene blue and crystal violet dyes at neutral conditions by reusable montmorillonite/NiFe2O4@amine-functionalized chitosan composite. Scientific Report, 2022, 12, 15499, https://doi.org/10.1038/s41598-022-19570-1.

Chwastowski, J.; Staro, P.; Pieta, E.; Paluszkiewicz, C. Bioremediation of Crystal Violet by Organic Matter and Assessment of Antimicrobial Properties of the Obtained Product. Sustainability 2023, 15, 67. https://doi.org/10.3390/ su15010067.

Eddy, N. O., Odiongenyi, A. O., Garg, R., Ukpe, R. A., Garg, R., El Nemir, A., Ngwu, C. M. and Okop, I. J. (2023). Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell–based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from

aqueous solution. Environmental Science and Pollution Research, 2023, doi:10.1007/s11356-023-26868-8.

Eddy, N. O., Garg, R., Garg, R., Eze, S. I., Ogoko, E. C., Kelle, H. I., Ukpe, R. A., Ogbodo, R. and Chijoke, F. Sol-gel synthesis, computational chemistry, and applications of Cao nanoparticles for the remediation of methyl orange contaminated water. Advances in Nano Research, 2023, https://doi.org/10.12989/anr.2023.15.1.000

Odiongenyi, A. O. and Afangide, N. R.. Adsorption and thermodynamic studies on the removal of congo red dye from aqueous solution by alumina and nano-alumina. Communication in Physical Sciences, 2019, 4(1): 1-7.

Salunkhe, B. and Schuman, T. P. Super-Adsorbent hydrogels for removal of methylene blue from aqueous solution: dye adsorption isotherms, kinetics, and thermodynamic properties. Macromol , 2021,1, 256-275. https://doi.org/10.3390/macromol1040018

Teng, W.; Liu, S.; Zhang, X.; Zhang, F.; Yang, X.; Xu, M.; Hou, J. (2023). Reliability treatment of silicon in oilfield wastewater by electrocoagulation. Water, 2023, 15, 206, https://doi.org/10.3390/w15010206,

Yuthawong, V.; Thongnueahaa, C.; Phungsai, P. Changes in optical

properties and molecular composition of dissolved organic matter and formation of disinfection by-products during conventional water treatment processes. Environmenta; Science and Water Research technology,2023, 9, 161-175, https://doi.org/10.1039/D2EW00423B.

Odoemelam, S. A., Emeh, N. U. and Eddy, N. O. Experimental and computational Chemistry studies on the removal of methylene blue and malachite green dyes from aqueous solution by neem (Azadiractha indica) leaves. Journal of Taibah University of Science, 12(3, 2018, 255–265, doi.org/10.1080/16583655.2018.1465725.

Garg, R.; Garg, R.; Eddy, N. O.; Almohana, A. I.; Fahad, S.; Khan, M. A.; Hong, S. H. Biosynthesized silica-based zinc oxide nanocomposites for the sequestration of heavy metal ions from aqueous solutions. Journal of King Saud University-Science, 2022, https://doi.org/10.1016/j.jksus.2022.101996.

Rápó, E.; Tonk S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017-2021). Molecules. 2021, 26, 17, 5419. doi: 10.3390/molecules26175419.

Shikuku, V. O. and Mishra, T. Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms. Applied Water Science (2021), 11, 103, https://doi.org/10.1007/s13201-021-01440-2.

Amalina, F., Abd Razak, A. S., Krishnan, S., Zularisam, A. W. and Nasrullah, M. Dyes removal from textile wastewater by agricultural waste as an absorbent – A review. Cleaner Waste Systems, 2022, 3, https://doi.org/10.1016/j.clwas.2022.100051.

Akpanudo, N. W. and Chibuzo, O. U.Musanga cecropioides Sawdust as an Adsorbent for the Removal of Methylene Blue from Aqueous Solution. Communications in Physical Sciences, 2020, 5(3): 262-370.

Khine, E. E., Koncz-Horvath, D., Kristaly, F., Ferenczi, T., Karacs, G., Baumli, P. and Kaptay, G. Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. J Nanopart Res 2022, 24, 139, https://doi.org/10.1007/s11051-022-05518-z

Keri, A.; Sap, A.; Ungoa, D.; Sebok, D.; Csapo, E.; Konya, Z.; Galbacs, G. Porosity determination of nano- and sub-micron particles by single particle inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrum, 2020, 35, 1139, doi: 10.1039/d0ja00020e rsc.li/jaas

Bensacia, N.; Fechete, I.; Boutemak, K.; Kettab, A. Mesoporous materials for adsorption of heavy metals from wastewater. In: Lichtfouse, E., Muthu, S.S., Khadir, A. (eds) Inorganic-organic composites for water and wastewater treatment. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore, 2022,. https://doi.org/10.1007/978-981-16-5916-4_8.

Bhavya, C.; Yogendra, K.; Mahadevan, K. M.; Madhusudhana, N. Synthesis of calcium oxide nanoparticles and its mortality study on fresh water fish Cyprinus carpio. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2016, 10, 12, 55-60, doi: 10.9790/2402-1012015560.

Gandhi, N.; Shruthi, Y.; Sirisha, G.; Anusha, C. R. Facile and Eco-Friendly method for synthesis of calcium oxide (CaO) nanoparticles and its potential application in agriculture. Haya Saudi J Life Sci,2021, 6,5,: 89-103.

Alavi, M. A.; Morsali, A. Ultrasonic-assisted synthesis of Ca(OH)2 and CaO nanostructures, Journal of Experimental Nanoscience, 2010, 5:2, 93-105, doi: 10.1080/17458080903305616.

. Osuntokun, J.; Onwudiwe, D. C.; Ebenso, E. E. Aqueous extract of broccoli mediated synthesis of CaO nanoparticles and its application in the photocatalytic degradation of bromocrescol green. IET Nanobiotechnology, 2018, 12, 7, 888-894. doi: 10.1049/iet-nbt.2017.0277.

Marquis, G.; Ramasamy, B.; Banwarilal, S.; Munusamy, A. P. Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract, Journal of Photochemistry and Photobiology B: Biology, 2016, 155, 28-33, ,https://doi.org/10.1016/j.jphotobiol.2015.12.013.

Silva, V. C.; Araújo, M. E. B.; Rodrigues, A .M.; Vitorino, M.d. B. C.; Cartaxo, J. M.; Menezes, R. R.; Neves, G. A. Adsorption behavior of crystal violet and congo red dyes on heat-treated brazilian palygorskite: kinetic, isothermal and thermodynamic studies. Materials, 2021, 14, 19, 5688; https://doi.org/10.3390/ma14195688

Mirghiasi, Z.; Bakhtiari, F.; Darezereshki, E.; Esmaeilzadeh, E. Preparation and characterization of CaO nanoparticles from Ca(OH)2 by direct thermal decomposition method", J. Ind. Eng. Chem.,2014, 20, 1, 113–117. https://doi.org/10.1016/j.jiec.2013.04.018.

Odiongenyi, A. O. Influence of sol gel conversion on the adsorption capacity of crab shell for the removal of crystal violet from aqueous solution. Communication in Physical Science, 2022, 8(1):121-127.

Odiongenyi, A. O. Removal of ethyl violet dye from aqueous solution by graphite dust and nano graphene oxide synthesized from graphite dust. Communication in Physical Sciences, 4(2):103-109.

Alobi, N. O. and Chibuzo, O.. Wood sawdust as adsorbent for the reomoval of direct (DR) dye from aqueous solution. Communication in Physical Sciences, 2019, 4(1-2): 160-166.

Eddy, N. O., Ibok, U. J., Garg, R., Garg, R. Falak, A. I., Amin, M., Mustafa, F., Egilmez, M. and. Galal, A. M. A brief review on fruit and vegetable extracts as corrosion inhibitors in acidic environments of steel in acidic environment. Molecules, 2022, 27, 2991. https:// doi.org/10.3390/molecules27092991.

.[35] Eddy, N. O., Odoemelam, S. A. And Ibiam E. Ethanol extract of Occimium gratissimum as a green corrosion inhibitor for mild steel in H2SO4. Green Chemistry Letters and Review, 2010, 3,3, 165-172. DOI: 10.1080/17518251003636428. https://doi.org/10.1016/j.rechem.2022.100290.

Eddy, N. O., Ukpe, R. A., Ameh, P., Ogbodo, R., Garg, R. and Garg, R. Theoretical and experimental studies on photocatalytic removal of methylene blue (MetB) from aqueous solution using oyster shell synthesized CaO nanoparticles (CaONPO). Environmental Science and Pollution Research, 2022b, https://doi.org/10.1007/s11356-022-22747-w

El Kassimi, A.; Achour, Y.; El Himri, M.; Laamari, R.; El Haddad, M. Removal of two cationic dyes from aqueous solutions by adsorption onto local clay: experimental and theoretical study using DFT method, International Journal of Environmental Analytical Chemistry, 2021, DOI: 10.1080/03067319.2021.1873306.

Odiongenyi, A. O. Utilization of Musa cecropiodesi woood saw dust for the removal of dispersed yellow (DY) dye from aqueous solution. Communication in Physical Sciences 5(3): 270-280.

Odiongenyi, A. O. Influence of sol gel conversion on the adsorption capacity of crab shell for the removal of crystal violet from aqueous solution. Communication in Physical Sciences, 2022, 8, 1, 121-127.

Morsi,, R. E. and Mohamed, R. S. Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake.R. Soc. open sci.(2018), 5: 172021. http://dx.doi.org/10.1098/rsos.172021

Rizzi, F., Castaldo, R., Latronico, T., Lasala, P., Gentile, G., Lavorgna, M., Striccoli, M., Agostiano, A., Comparelli, R., Depalo, N., Curri, M. L. and Fanizza, E. High surface area mesoporous silica nanoparticles with tunable size in the sub-micrometer regime: insights on the size and porosity control mechanisms. Molecules,2021, 26, 4247, https://doi.org/10.3390/molecules26144247.

Ogoko, E. C., Kelle, H. I., Akintola, O. and Eddy, N. O. Experimental and theoretical investigation of Crassostrea gigas (gigas) shells based CaO nanoparticles as a photocatalyst for the degradation of bromocresol green dye (BCGD) in an aqueous solution. Biomass Conversion and Biorefinery. 2023, https://doi.org/10.1007/s13399-023-03742-8 .

Bensacia, N.; Fechete, I.; Boutemak, K.; Kettab, A. Mesoporous materials for adsorption of heavy metals from wastewater. In: Lichtfouse, E., Muthu, S.S., Khadir, A. (eds) Inorganic-organic composites for water and wastewater treatment. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore, 2022,. https://doi.org/10.1007/978-981-16-5916-4_8.

Bhavya, C.; Yogendra, K.; Mahadevan, K. M.; Madhusudhana, N. Synthesis of calcium oxide nanoparticles and its mortality study on fresh water fish Cyprinus carpio. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2016, 10, 12, 55-60, doi: 10.9790/2402-1012015560.

Odoemelam, S. A., Oji, E. O., Eddy, N. O., Garg, R., Garg, R., Islam, S., Khan, M. A., Khan, N. A. and Zahmatkesh, S. Zinc oxide nanoparticles adsorb emerging pollutants (glyphosate pesticide) from aqueous solution. Environmental Monitoring and Assessment, https://doi.org/10.1007/s10661-023-11255-0.

Alavi, M. A.; Morsali, A. Ultrasonic-assisted synthesis of Ca(OH)2 and CaO nanostructures, Journal of Experimental Nanoscience, 2010, 5:2, 93-105, doi: 10.1080/17458080903305616.

Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J. and Maina, E. N. Adsorption of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and thermodynamics study. Scientific African (2009), 5, https://doi.org/10.1016/j.sciaf.2019.e00116.

Eddy, N. O. and Ita, B. I. (2011). Theoretical and experimental studies on the inhibition potentials of aromatic oxaldehydes for the corrosion of mild steel in 0.1 M HCl. Journal of Molecular Modeling 17: 633-647. DOI:10.1007/s00894-010-0749.

Mannu, A.; Di Pietro, M. E.; Mele, A. Band-gap energies of choline chloride and triphenylmethylphosphoniumbromide-based systems. Molecules, 2020, 25;25(7):1495. doi: 10.3390/molecules25071495.

Lim, L., Priyantha, N., Cheng, H. H. and Zaidi, N. A. H. M. Parkia speciosa (Petai) pod as a potential low-cost adsorbent for the removal of toxic crystal violet dye. Scientia Bruneiana, 2018, doi:10.46537/scibru.v15i0.26.

Mannu, A., Di Pietro, M. E. and Mele, A. Band-gap energies of choline chloride and triphenylmethylphosphoniumbromide-based systems. Molecules, 2020, 25,25(7):1495. doi: 10.3390/molecules25071495.

Foroutan, R.; Peighambardoust, S. J.; Peighambardoust, S. H.; Pateiro, M.; Lorenzo, J. M. Adsorption of Crystal Violet Dye Using Activated Carbon of Lemon Wood and Activated Carbon/Fe3O4 Magnetic Nanocomposite from Aqueous Solutions: A Kinetic, Equilibrium and Thermodynamic Study. Molecules,2021, 26, 2241. https://doi.org/10.3390/molecules26082241.

Sun, P.; Hui, C.; Azim Khan, R.; Du, J.; Zhang, O.; Zhao, Y. Efficient removal of crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and modeling study their adsorption behavior. Scientific Report, 2025, 12638, https://doi.org/10.1038/srep12638

Samrot, A. V.; Ali, H. H.; Selvarani, J. A.; Faradjeva, E.; Prakash, R. P.; Kumar, S. Adsorption efficiency of chemically synthesized superparamagnetic iron oxide nanoparticles (SPIONs) on crystal violet dye, Current Research in Green and Sustainable Chemistry, 2021, 4, https://doi.org/10.1016/j.crgsc.2021.100066

Al-Ajji, M. and Al-Ghouti, M. A. Novel insights into the nanoadsorption mechanisms of crystal violet using nano-hazelnut shell from aqueous solution. Journal of Water Process Engineering, 2021, 44, https://doi.org/10.1016/j.jwpe.2021.102354.

Eddy, N. O., Odoemelam, S. A. and Ibiam E (2010). Ethanol extract of Occimium gratissimum as a green corrosion inhibitor for mild steel in H2SO4. Green Chemistry Letters and Review, 3(3): 165-172. DOI: 10.1080/17518251003636428,

Benjelloun, M.; Miyah, Y.; Evrendilek, G. A.; Zerrouq, F.; Lairini, S. Recent advances in adsorption kinetic models:their application to dye types. Arabian Journal of Chemistry, 2021, 14, 4, https://doi.org/10.1016/j.arabjc.2021.103031.

Brandani, S. Kinetics of liquid phase batch adsorption experiments. Adsorption, 2021, 27, 353–368, https://doi.org/10.1007/s10450-020-00258-9.

Hambisa, A. A.; Regasa, M. B.; Ejigu, H. G.; Senbeto, C. B. Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent. Applied Water Science, 2020, 13, https://doi.org/10.1007/s13201-022-01832-y.

Kostoglou, M.; Karapantsios, T. D. Why Is the Linearized Form of Pseudo-Second Order Adsorption Kinetic Model So Successful in Fitting Batch Adsorption Experimental Data? Colloids Interfaces, 2022, 6, 55. https://doi.org/10.3390/ colloids604005.

Modwi, A.; Elamin, M. R.; Idriss, H.; Elamin, N. Y.; Adam, F.A.; Albadri, A.E.; Abdulkhair, B. Y. Excellent Adsorption of Dyes via MgTiO3@g-C3N4 Nanohybrid: Construction, Description and Adsorption Mechanism. Inorganics 2022, 10, 210. https://doi.org/10.3390/inorganics10110210.

. Yousaf, A.; Salman, M.; Rehman, R.; Farooq, U. Detoxification of toxic cations Pb(II) and Cd(II) from liquid phase by employing Pennisetum glaucum biowaste: a kinetic investigation, International Journal of Phytoremediation,2022, 24, 2, 110-117, DOI: 10.1080/15226514.2021.1926913.

Georgin, J.; da Silva Marques, B.; da Silveira Salla, J.; Foletto, E. L.; Allasia, D.; Dotto, G. L.. Removal of Procion Red dye from colored effluents using H2SO4-/HNO3-treated avocado shells (Persea americana) as adsorbent. Environ Sci Pollut Res, 201,8 25, 6429–6442. https://doi.org/10.1007/s11356-017-0975-1.

Ahmad, A. A.; Din, A. T. M.; Yahaya, N. K .E.; Khasri, A.; Ahmad, M. A. Adsorption of basic green 4 onto gasified Glyricidia sepium woodchip based activated carbon: Optimization, characterization, batch and column study. Arabian Journal of Chemistry, 2020, 13, 6887–6903. https://doi.org/10.1016/j.arabjc.2020.07.002.

Ozcan, C. and Gurel, E. N. l, L. A comparison for the removal of two different textile dyes by raw Helianthus annuus L. seed shells. Int. J. Environ. Sci. Technol. 2023, https://doi.org/10.1007/s13762-022-04729-0.

Mustapha, O. R.; Osobamiro, T. M.; Sanyaolu, M. O.; Alabi, S. M. Adsorption study of Methylene blue dye: an effluents from local textile industry using Pennisteum pupureum (elephant grass), International Journal of Phytoremediation, 2023, DOI: 10.1080/15226514.2022.2158781.

Debord, J.; Harel, M.; Bollinger, J.; Chu, K. H. The Elovich isotherm equation: Back to the roots and new developments, Chemical Engineering Science,2022, 262, https://doi.org/10.1016/j.ces.2022.118012.

Edet, U. A.; Ifelebuegu, A. O. Kinetics, isotherms, and thermodynamic modeling of the adsorption of phosphates from model wastewater using recycled brick waste. Processes, 2020, 8,: 665. https://doi.org/10.3390/pr8060665.

Salunkhe, B. and Schuman, T. P. Super-Adsorbent hydrogels for removal of methylene blue from aqueous solution: dye adsorption isotherms, kinetics, and thermodynamic properties. Macromol , 2021,1, 256-275. https://doi.org/10.3390/macromol1040018

Chwastowski, J., Staro, P., Pieta, E. and Paluszkiewicz, C. Bioremediation of Crystal Violet by Organic Matter and Assessment of Antimicrobial Properties of the Obtained Product. Sustainability 2023, 15, 67. https://doi.org/10.3390/ su15010067.